

775

A COMPARATIVE STUDY OF CYBER-PHYSICAL CLOUD

SYSTEMS
Gheorghe SEBESTYEN, Professor PhD,

Adela Bereş, PhD Candidate,

Technical University of Cluj-Napoca,

Béla GENGE, Associate Professor PhD,

“Petru Maior” University of Tîrgu Mureş

Abstract: Cyber-physical systems are more and more integrated into Internet of

Things (IoT) making it vulnerable to malicious attacks. These systems generate

huge amount of information, making Cloud Computing a natural choice to store

and process this data. Nevertheless, as shown in this paper, their integration

raises security issues that need to be addressed. We present platforms for cyber-

physical Cloud systems, as well as a set of security test scenarios we performed

in order to discover their vulnerabilities.

Index Terms: Cloud computing, Security, Cyber-physical Systems

1. Introduction

Nowadays there are huge volumes of digital information being

generated, transmitted, processed or stored around the world. The

amount of space and processing power of private companies and tenants

is limited and usually not enough to handle all their data. More and

more of these companies move their data to the Cloud. Cloud

Computing provides the infrastructure and space to store large amounts

of data and also process it in a timely manner, while providing

availability and resilience.

Cyber-physical systems are becoming part of our daily life, being Smart

Grids, sensors for humidity, air, pollution, wind or even body sensors to

monitor our health. Smart cities are the next generation of cities in which

we are going to live. Even today, cities like Barcelona have an

infrastructure of sensors which are monitoring weather conditions or

transportation in order to make the town smart, signaling alerts or

helping to organize the municipality activities better. Cloud Computing

comes as a natural choice to implement smart cyber-physical platforms

due to its storage and computational capacity.

776

Security is an important aspect in Cloud integrated cyber-physical

systems. Data needs to be safe throughout the whole communication

chain, from the moment it is generated to the moment it is stored. Only

authorized users are allowed to access the information stored in Cloud.

Integrity of the data should also be guarded. Tampering with the data,

bad data injection can cause false alarms or malfunctioning of the cyber-

physical systems.

Briefly, in this paper we present the existing solutions and platforms

which integrate Cloud Computing with cyber-physical systems focusing

on the security aspects that they implement.

The paper is organized as follows. Chapter 2 depicts the existing

researches and platforms which integrate Cloud Computing with cyber-

physical systems. Chapter 3 is dedicated to the study and testing of two

open source platforms: Sentilo for Smart Cities and Mirantis OpenStack.

Chapter 4 discusses the findings of the studied literature and platforms.

The paper concludes in Chapter 5.

2. Cyber-physical Cloud Systems

2.1 S. H. Shah et al. WSN integrated Cloud framework

The authors propose a framework to integrate wireless sensor networks

with Cloud. The main modules of the architecture are:

 User Identity & Access Management Unit

 Monitoring & Metering

 Request Subscriber

 Data Processing Unit

 Pub/Sub Broker

 Data Repository

The framework is depicted in the following figure:

777

Research institute AdministratorIndividual

Identity &

AccessManagement Unit
Monitoring & Metering

Request Subscriber

SaaS PaaS IaaS

Access Policy

Data Repository

Data Processing Unit

Pub/Sub Broker

Event Matcher

Registry

Analyzer

Gateway

Clouds

Clouds

Figure 1 General overview of proposed architecture [1]

The users of the framework are not allowed to see or act on the data if

they are not registered through the User Identity & Access Management

Unit. Data coming from the WSN is passed through a gateway and sent

to the Data Processing Unit which stores it in the Data Repository. Also it

alerts the Pub/Sub Broker that new data was received. The Broker checks

the subscriptions with the help of the Request Subscriber module and

forwards the data to the respective users. Role-based Access Policy

(RBAC) is used to authenticate and authorize users in the system. Also,

in order to protect the data, the User Identity & Access Management Unit

implements Diffie-Hellman keys and Kerberos.

2.2 Wen-Yaw Chung et al. Cloud Computing system for agricultural

WSN

Wen-Yaw Chung et al. present an integrated framework for agriculture

monitoring systems composed of a WSN which collects data from

temperature, humidity etc. sensors and a Cloud platform which stores

and presents the data and useful graphs to the users [2].

778

The proposed Cloud system has 1 master server and 4 slave computers

which are doing the work of collecting, sampling and analyzing sensors

data. Also the client communicates with the system through a web

service. The data is stored in relational databases. The system was

implemented using SQL database, stored procedures, Linq-to-Sql to

query the data, web service which uses XML to send/receive the

messages and the user interface was written in C#.

The data can be visualized in two ways: either a data curve or a

panorama map. On the panorama map the user can click on the specific

sensor to see its information and data that it generated.

2.3 Multi-Level Authentication for Sensor-Cloud Integration Systems

In this paper, the authors describe an authentication system based on

multi-level authentication technique which they modeled using Petri

nets. This system is used to secure the data generated by the sensors and

stored in the Cloud [3].

The levels on which the password gets generated then concatenated and

checked are:

 Organization level

 Team level

 User level

The architecture of the system consists of multiple sensor networks

which are connected to the Cloud platform. Data is being routed from

the nodes to the base stations and then to the Cloud using the ant colony

optimization technique. Afterwards it is stored in the Cloud. To gain

access to the data a user must pass all levels of authentication.

779

Node

GW

Node

Node

Node

Node

Node

Node

Wireless Sensor Network

Node

GW

Node

Node

Node

Node

Node

Node

Wireless Sensor Network

SaaS
PaaS

IaaS

Authenticated organization in using cloud services

SA = Generate Multidimensional Service Authentication Password

Within Organization

TA = Generate Multidimensional Team Authentication Password

PA = Generate Multidimensional User Authentication Password

Within Team

Particular User

Password = Concatenating(SA, TA, PA)

Super

Privileged

User

Special

Privileged

User

Normal

User

Figure 2 System Architecture of the Proposed Cloud computing based sensor

data analysis environment [3]

2.4 Open.Sen.se architecture for integrating WSN with Cloud

The authors present a flexible and extensible architecture for a WSN

Cloud integrated system. It has 3 layers:

 Sensor layer

 Coordinator layer

 Supervision layer [4]

The sensors are organized in the Sensor Layer. They are called End

Devices and form a Mesh network which sends data through the base

station to the Coordinator Layer. All sensor nodes use XBee ZB platform.

The Coordinator Layer acts like a buffer, storing the data and sending it

to the Supervision Layer at predefined intervals. The Supervision Layer

upon receiving data connects to a web service to publish the data in the

Cloud. An Open.Sen.se server is used to store and retrieve the data

generated by the sensors. From a security point of view, a Sen.se key is

generated for each user of the API which is supposed to be unique. The

Open.Sen.se server provides a graphical display of the data through a

Senseboard and also sends event notifications using predefined If-

780

conditions in the form of text messages or tweets if the value measured

for a sensor is pass the limit set by the user.

2.5 Secure Cloud-based Architecture for e-Health WSNs

The architecture proposed in this paper has the following main

components:

 WSN which collects the data

 User applications to access the stored data

 HealthCare Authority (HA) which control the security protocols

 The cloud servers where the data is stored

Security-wise the authors propose to use ABE (Attribute Based

Encryption) and symmetric cryptography to encrypt the data. More

specifically, they propose to encrypt each file with a randomly generated

symmetric key (RSK) and encrypt the RSK with ABE. Both the encrypted

file and the encrypted RSK are sent to the cloud for storage to allow fine

grained data sharing with authorized users. HA generates and sends to

each user his ABE security parameters which are a pair of access

structure and secret key. The secret key is tagged with the user attributes

set which represent the user privileges. This information is required to

decrypt data that the user is allowed to access. The access structure

represents the access policy that protects the user data. When a user

encrypts the random symmetric key (RSK) that protects his data using

this structure, he can be sure that only authorized users (who have the

correct attributes) can decrypt and access his data [5].

Furthermore the communication between entities is performed via SSL

and data is encrypted before being sent to the cloud server. This

architecture guaranties the following security services:

 Fine-grained access control

 Integrity and authenticity

 Availability

 Collusion resistance

Using AES to encrypt the data and CP-ABE (Ciphertext-Policy ABE) to

only encrypt the AES key, this system proved to be 27-47% faster than

plain ABE encryption/decryption of the data.

2.6 Multi-agent system based architecture for secure Cloud

The authors propose an architecture which enforces the integrity of the

data in Cloud. The architecture is based on Multi Agent Systems, a term

used in artificial intelligence. The architecture has two layers and five

781

agents from which two are mainly used, Cloud Service Provider Agent

(CSPA) and Cloud Data Integrity Backup Agent (CDIBA):

Figure 3 Multi-agent architecture for Cloud [6]

The main responsibility of CSPA is to back up the data in Cloud and to

send alerts in case the data is altered or any kind of error happened, be it

human, software or hardware. CDIBA is responsible with the encoding

of data by using hash functions.

3. Security tests on open source platforms

3.1 Sentilo

Sentilo is an open source sensor and actuator platform designed to fit in

the Smart City architecture of any city that looks for openness and easy

interoperability. It has been sponsored by the Barcelona City Council,

through the Municipal Institute of Informatics (IMI), as part of a project

started in November 2011 conceived for defining the strategy and the

necessary actions in order to achieve global positioning Barcelona as a

reference in the field of Smart Cities [7].

782

It is developed using open standards and free software so everybody can

benefit from it, experiment and use it in their own community and it’s

also supported by a variety of companies and cities. The main reason for

using open source software was to come in the aid of public

administration and private providers of sensors to make their interaction

and implementation of smart cities transparent and homogenous.

Until now, the sensors networks implemented in cities or other

environments are mainly proprietary solutions. This makes them

dependent of a specific technology and also usually impossible to share

data easily and without conversion between these networks and

environments. The incompatibility also increases the amount of data that

is duplicated in different systems and the costs of implementation and

maintenance of such interconnected structures.

So the main idea that inspired the design of Sentilo is first and foremost

the desire to create a cross-platform oriented infrastructure and data

management service, escaping from vertical ITC “silo” solutions, for

sharing information between heterogeneous systems and to easily

integrate legacy applications [7].

The regular users of Sentilo are:

 municipalities or organizations who need to process lots of

information received from the terrain generated by heterogeneous

hardware and software devices (sensors, etc.), and who want a

centralized and homogeneous way of managing and distributing these

data across their information systems

 anyone from the IT world interested in contributing to the

expansion of the "Internet of Things" and smart cities with the goal of

improving citizens' quality of life [7]

Sentilo is already implemented in Barcelona from the beginning of 2013.

The platform collects data from smart sensors all over the city including

water, lightning and energy sensors and plans to expand its networks in

the future years. Sentilo is also in testing phase in other Catalonian

regions and cities.

Sentilo makes it easy to integrate sensors and actuators from different

manufactures with applications to analyze and visualize the data. It acts

like a middle layer between the sensor networks layer and the

applications layer:

783

Figure 4 Sentilo platform architecture [7]

Sentilo includes:

 A front-end for message processing, with a simple REST API

 An administration console for configuring the system and

managing the catalog

 A memory database, aimed to accomplish high performance rates

 A non-SQL database, in order to get a more flexible and scalable

system

 A universal viewer provided as a public demo what can be used

as a start point for specific business visualizers

 A basic statistics module that records and display basic platform

performance indicators

 An extensible component architecture, to enlarge the platform

functionality without modifying the core system. Sentilo starts with an

initial set of agents: one for exporting data to relational databases and

another to process internal alarms based on basic rules [7]

The open source technologies used to develop the platform are: Java,

Redis, Mongo DB, JQuery, JSON.

784

The Catalog component is used by the web application. As stated before,

Sentilo offers an administration console from where the users,

applications, providers, sensors, sensors types, components etc. can be

managed. Also it provides a graphical way to see the sensors, sensors

locations and their data through maps and charts. Alerts and alarms can

also be viewed from the web application.

Data received by the sensors is stored using the Real Time Storage

component. Besides this task, it also has the role of making periodical

backups of the data in the system.

The Pub/Sub component is written in Java and has two layers:

 Transport layer

 Service layer

In order to respond to client’s requests the transport layer uses workers

on separate threads. The requests are added to a queue and the workers

pick them as soon as they are available. After a task is assigned, the

worker sends it for processing to the Service layer. When it receives an

answer it will forward the message back to the client:

Figure 5 Transport layer request flow [8]

The Service layer is in charge of processing, validating and authorizing

the requests. All tasks are done in memory using Redis, so the client

doesn’t have to wait long for the response.

785

Figure 6 Service layer processing flow [8]

The processing flow of the Service layer is described below:

 The Worker delegates the request to the associated handler

depending on the type of request (data, order, alarm etc.)

 The following validations are performed on each request:

o (2a) Integrity of credential: checks the received token sent in the

header using the internal database in memory containing all active

credentials in the system

o (2b) Authorization to carry out the request: validate that the

requested action can be done according to the permission database

 the validity of the request parameters: mainly structure and

typology

 After that stores the data in Redis (in memory) and depending on

the type of data:

o (3a) publish the data through publish mechanism

o (3b) or register of the subscription in the

ListenerMessageContainer

 Redis is responsible for sending the published information to

ListenerMessageContainer event, who is responsible for managing the

subscription in Redis as a client for any type of event

 The container notifies the event to each subscription associated

with it [8]

786

The Credentials & Permissions database is updated periodically and

refreshed also in memory where is used for processing.

Sentilo provides two agents:

 Relational database agent – used to export historical data to a

relational database

 Alert agent – used for processing each data received by the

platform and validate it with the business rules configured in the catalog

[8]

Security-wise, each request must have an authentication token. If this

authentication token is not present or is incorrect, the request is dumped

and not processed. The permissions, credentials and authentication

tokens are managed through the web application by the Catalog module.

The authentication tokens are unique per application and provider, so

even though all data is stored in one place, a client can have access only

to its own data. To secure the push messages that the platform sends,

Sentilo uses HMAC, specifically the SHA-512 hash algorithm. The

messages are sent and received using REST API and in JSON format.

We conducted a set of tests on Sentilo platform. The test environment

was set up on Windows 7 and Windows 8 servers and virtual machines.

We configured and started:

 MongoDB

 Redis

 Sentilo Pub-Sub server

 Sentilo Web App Catalog

 Sentilo Agent Alert Server

We added the sensors through direct calls to the RESTFul API:

curl --request POST --header "IDENTITY_KEY: identity_key" --data

'{"sensors":[{"sensor":"RE0025","description":"sensor 25 of

moisture","type":"humidity","dataType":"number","unit":"%",

"component":"METEO-1",

"componentType":"meteo","componentDesc":"Test componente",

"location":"41.39479 2.148768","timeZone":"CET" }]}' --header "Content-

type: application/json" http://sentilo:8081/catalog/testApp_provider

In order to simulate a sensors network we wrote a Python script which

publishes data to the platform on behalf of the registered sensor above:

import requests

787

import random

import time

url = 'http://localhost:8081/data/testApp_provider/RE0025'

headers = {'IDENTITY_KEY': 'identity_key'}

while True:

 data = '{"observations":[{"value":"' + str(random.randint(1,200)) +

'"}]}'

 r = requests.put(url, headers=headers, data=data)

 time.sleep(3)

We also added a subscriber which was listening for the nodes

observations. The subscriber was written using Node.js:

my_http = require("http");

url = require("url");

var querystring = require('querystring');

function processPost(request, response, callback) {

 var queryData = "";

 if(typeof callback !== 'function') return null;

 if(request.method == 'POST') {

 request.on('data', function(data) {

 queryData += data;

 if(queryData.length > 1e6) {

 queryData = "";

 response.writeHead(413, {'Content-Type': 'text/plain'}).end();

 request.connection.destroy();

 }

 });

 request.on('end', function() {

 request.post = querystring.parse(queryData);

 callback();

 });

788

 } else {

 response.writeHead(405, {'Content-Type': 'text/plain'});

 response.end();

 }

}

my_http.createServer(function(request,response){

 if(request.method == 'POST') {

 processPost(request, response, function() {

 console.log(request.post);

 response.writeHead(200, "OK", {'Content-Type': 'text/plain'});

 response.end();

 });

 } else {

 response.writeHead(200, "OK", {'Content-Type': 'text/plain'});

 response.end();

 }

}).listen(88);

console.log("Server Running on 88");

The alarm was set to be triggered if the observations received from the

sensor were bigger than 45. We subscribed both to observations and

alarms:

curl --request PUT --header "IDENTITY_KEY: identity_key" --data

'{"endpoint":"http://subscriber:88"}'

http://senstilo:8081/subscribe/data/testApp_provider

curl --request PUT --header "IDENTITY_KEY: identity_key" --data

'{"endpoint":"http://subscriber:88"}'

http://sentilo:8081/subscribe/alarm/alarm_re0025

Data was transmitted over a normal public network. No VPNs were set

up or any kind of tunneling between the sensors and the platform.

We focused mainly on the integrity of the messages sent from the sensors

to Sentilo platform. In order to test if the data can be tampered with or

modified we tried the following types of attack:

 Sniffing

 Man in the Middle attack

 Bad Data Injection attack

 Replay attack

789

Sensors send their observations in clear text. Any other value than

integer is not recognized as valid by the platform. So encrypting the data

is not possible. Also being a REST call, we had access to the headers of

the message and we were able to find out the authentication token of the

application/provider. This is also sent in clear text.

We successfully captured, replicated and modified the observations from

the sensors. In this manner we were able to raise alarms that were not

real. Neither the Alert agent nor the Pub/Sub Server noticed that the data

was altered.

3.2 Mirantis OpenStack

OpenStack is a cloud computing platform which was started by NASA

and Rackspace. Now it is managed by the OpenStack Foundation, a non-

profit organization. It is an open source project for providing cloud

computing mainly for public and private clouds. Being open source

means that a community of developers worldwide is contributing to the

development and enhancement of the platform every day.

OpenStack consist of a series of modules making it flexible and scalable.

Any user can add its own particular module if needed or modify the

existing ones. These modules and their functionality are described below:

Figure 7 OpenStack architecture [9]

Nova – Compute module

This module provides services to support the management of virtual

machine instances at scale, instances that host multi-tiered applications,

dev/test environments, "Big Data" crunching Hadoop clusters, and/or

high performance computing [9].

Security-wise the instances should be isolated and protected as well as

the public endpoints and the communication between the components.

790

Cinder – Block Storage module

The Block Storage module is responsible of providing storage for the

blocks of the compute instances. It is mainly important for tasks which

depend on the speed of accessing data.

Encrypting the data both on storage and during communication, as well

as providing strong authentication and authorization techniques should

protect the confidentiality and integrity of the blocks and data.

Neutron – Networking module

Neutron provides various networking services such as IP address

management, DNS, DHCP, load balancing, and security groups (network

access rules, like firewall policies). It provides a framework for software

defined networking (SDN) that allows for pluggable integration with

various networking solutions [9].

From a security point of view this module includes techniques for

protecting the confidentiality, integrity and availability.

Glance – Image Service module

This module’s task is to manage (discover, register, deliver) the virtual

machines images needed by the Compute module. The security issues

are the same as for Nova.

Swift – Object Storage module

Swift is the module which stores the objects and files in the cloud. It has

a native API but also an Amazon Web Services S3 specific API. Data is

not stored only in one copy, but it’s replicated in order to provide

resilience.

Security-wise the Object Storage module has the same issues and tasks as

the Block Storage module.

Keystone – Identity Service module

Keystone is a shared service that provides authentication and

authorization services throughout the entire cloud infrastructure. The

Identity service has pluggable support for multiple forms of

authentication [9].

Security concerns here pertain to trust in authentication, management of

authorization tokens, and secure communication [9].

Horizon – Dashboard

OpenStack comes with a web application for cloud administrators and

tenants. From this application the cloud resources (computing instances,

storage, security rules, images etc.) can be managed according to the role

and authorization of the logged in user.

http://docs.openstack.org/security-guide/content/introduction-to-openstack.html
http://docs.openstack.org/security-guide/content/introduction-to-openstack.html

791

Security-wise OpenStack suggests three architectures to make the

infrastructure safe and proof against attacks and intrusions:

 SSL/TLS proxy in front – in this configuration the SSL/TLS proxy

is placed in front of the OpenStack environment. Communication is

encrypted only until the OpenStack API endpoints, afterwards clear

communication is used.

 SSL/TLS on same physical hosts as API endpoints – this

architecture is similar with the previous model, the difference being that

the SSL/TLS proxy is hosted on the same machine as the OpenStack API

endpoints. The endpoints will be configured to listen only to local

network interface, while remote calls will go through the SSL/TLS proxy.

 SSL/TLS over load balancer – this architecture is mainly useful for

high availability or load balanced environments which need to inspect

traffic. This can be achieved using the HAProxy which is able to pass the

HTTPS traffic straight to the API endpoints.

 Cryptographic separation of external and internal environments –

this architecture suits the cases where on the public network certificates

are issued by a certain CA, but internally one might want to use their PKI

to issue certificates for SSL/TLS. Subsequently, cryptographic separation

can be accomplished by terminating SSL at the network boundary, then

re-encrypting using the internally issued certificates. The traffic will be

unencrypted for a brief period on the public facing SSL/TLS proxy, but it

will never be transmitted over the network in the clear. [9]

792

Figure 8 OpenStack secure architectures models [9]

Additional security measures that can be implemented on the network

service, Neutron, include:

 VLANs with IEEE 802.1Q headers

 L2 tunneling

 Access Control Lists

 L3 routing and Network Address Translation (NAT)

 Quality of Service (QoS)

 Load balancing

 Firewalls [9]

We have chosen to install Mirantis, the most flexible and easy to use

deployment of OpenStack. We have it running using VirtualBox on a

Windows 7 host with this architecture:

 1 master node

 3 slave nodes

Afterwards, using the Fuel web interface we’ve configured Mirantis

OpenStack environment and deployed it on the four VMs:

793

 Running Juno on Ubuntu 14.04.1

 QEMU hypervisor

 Neutron with VLAN segmentation

 Default security group

Using the Horizon Dashboard application we configured the images and

instances for Nova service, as well as specific keypairs for security

purposes. This keypairs are saved in .pem files and registered in the

Nova database. All subsequent calls to the Nova instances will need to

contain this keypair in order to be declared secure and processed. The

key is encrypted using RSA:

-----BEGIN RSA PRIVATE KEY-----

MIIEowIBAAKCAQEAy4xhtburmDEzJrJykg2bVaMI8FHN+Mtf9rym7N5/rN

5OMkCh

V+kXx3h4LgUsMJNDtvNgCyvd9GltGGp0me4vsFhUvryjBHGy/RsRBDbaktk

2fxU2

uYI05Y7SzTrE9Np2yrZW35/LWVtVHsm7Mrjwvv3UUN2IWU+GhQd6rIAi

UeQ1yr/f

SEBzUK1b2OmLsBy2Zf5gdAOUg91qC6SBMoAQDMT8HUu3AEoLtnoPQZ

OcsDfEDG2a

yqvUGKpO8HWHgRCpdW5JYcugAZwHvzxphKzoOaMfh4Yh60sFn0986RHI

KLwTzu1M

qLvahc4COeILteiSmQEEbg02wi0aMVMWKScZ2QIDAQABAoIBADyp3gUX

pZB6OVBz

Joo42+6t5GAbQVPA6RzUJLu7pDmVF6EKeguFQL0GPmsYx47ClQ/VgO5TaJ

cLRKRe

NdoajsPzz235MmyEpl+gzXWAE6xoaEF/xQuMrs8rvc/EkCaZZYYMyd9j9Gr

xOXEv

lkcLr1R8ueZP3+8eMG09SWZX2eKlpMdDSWgSAF/Rgr0ikryBmAIffBhqujxt

+jSy

DS3hd2MFRnNNjG5FsH97v1mgbON9nufIJVhebx8Lq9PP1QfAbVNDzDnOv

yWBP3JP

Wyv4Rg7WFBK3WWFsxGDzmNua7LWFasvS0KegczZx7F6ttuyf3MWQPVX

0Qu/RnNTN

F4ZQHXECgYEA8d12raKVt7fSO1nDyPD/skwP+swb2Hc31TA3d8pfcwkVry

ubUi4X

OSP/MHiUrgpSn9m+HMkC0tmVRFb/UnjjQvsJR7qVnAkJ9EtuzE2F6qr2JSgJ

ZBz7

794

EX+fdSCRWs8+4lXbzf1ZMju71V1yvFuBtSxTHhx8PqGdLVUomdGozgcCgY

EA13Gp

poPOlj7QgNKKlEGL/y1IisZ8Rv3Opke8fb4gBSCrCOL1BiQCSp05Z4xyIiHZ/t

oL

VEScsPYsH7v2iXHMWB4A+5phQU6ZCUmQGRvYYEnj1Krv3pAASy6hK3

8N+bCzCAoc

tTa4pwurETlpoHqpAl3htjbpnHvvVV4N6KnO4R8CgYBU2Emfk59NuXBIXa7

uuIwa

MdCRPDSwdPHjGWz72sQtCIzQzE1KQNzosJX+nO4bN4fQh4PHeURCTw2

r0ZDzj3C5

uHKC9RMyj4Esb6HIjZFixuJeGnNg6UGx28FGR0x2PKlkoJXg5vT5SDcWHB

f5t2gC

9C+cKoXzOqJ2mp8JhqDe1QKBgHKpy+ETxZ+xTsdBRwAg4qGtOC6j9QDTl

GhrRaam

yePwvxa7tCzQfWe4xhSWayg/XAaHhgAThFGqs1EweMYuCtPbJCrEv35ClrC

atlam

u0KEEP3e/Es32PAqoRzFQmrh4Gcm+qB3v08opqNEKzN+FPVtgfO4xhzC2V5

V8JEj

zzeBAoGBAJRAXxUpTzQLV83kVG1X8neChyeWnGwIbnqCjs1AP9msE7tTfp

9yUvow

KTNrrN5QhVIFVo1yqnKxsg6ZfxUsdrHeMEJLM7hnlrG7cntlz/eZa4iAglYY5t

RW

fxB+oBuDH7f1YrQS+QsJWPSwmMwHeN4rqB3LLrHeKKk7VI+rU6Mf

-----END RSA PRIVATE KEY-----

Not storing the keypairs in clear text and making them required for each

call ensures that the Nova service is receiving and processing only

trustworthy requests. Also these keypairs can be configured to be edited

only by the user that created them.

4. Discussions

From the studied articles and researches we can see there is an increasing

interest in creating and developing platforms that integrate cyber-

physical systems like sensor networks or Smart Grids with Cloud

Computing. The main areas in which these systems can be used are:

 Agriculture

 Military

 Transportation

795

 Health Care

 Smart cities

The advantages that Cloud is bringing in such systems are the storage

capacity and computational power. Data can be stored for real-time

processing or historical purposes. Most of the studied platforms have the

purpose of helping users to see their data in a more organized manner

but most importantly help them make informed decisions in a short

period of time.

Usually, the data that is being generated, sent through the

communication channels and stored must have the following properties:

 Freshness

 Integrity

 Availability

 Non-repudiation

 Privacy

Security-wise, only a few of the studied frameworks implemented

solutions to keep the data and system secured. From these solutions the

most used ones are:

 Encryption

 Digital signatures

 Authentication and authorization systems for the users

 Third Party Auditors

From the two studied open source platforms, Sentilo is specifically

targeted for sensor networks integration. Mirantis OpenStack is a more

generic platform, which can be used for other types of applications as

well. The characteristics of the two platforms are presented in the

following table:

Characteristics Sentilo Mirantis OpenStack

Type Open source Open source

Target Integrated cloud

system for sensor

networks

Cloud system with

general purpose

(cyber-physical

systems, running time

consuming tasks,

cloud applications)

Architecture Modular Modular

796

Encryption HMAC, SHA-512

(only for callback

messages)

RSA (encrypted

keypairs), data can

also be encrypted

Certificates Not specifically

mentioned

Yes

SSL/TLS Not specifically

mentioned

Yes, also proposes

different architectures

to implement it

Table 1 Characteristics of Sentilo and Mirantis OpenStack platforms

Mirantis OpenStack is more security oriented than Sentilo, mostly

because it has a wider range of applications. Both platforms have a

modular architecture, each module having precise tasks to process.

Having this kind of architecture both Sentilo and MirantisOpenStack

support additional modules so a user/developer which is not satisfied of

the functionality can add its own custom module or change the

implementation of the existing ones.

Sentilo is used in real deployments in cities in Spain, most important

being Barcelona. Mirantis OpenStack deployments are also used world-

wide. Both platforms have proved to be reliable in real environments.

5. Conclusions

Cyber-physical systems have already been integrated with Cloud

platforms. There have been researches and implementations of such

frameworks in laboratories, test beds and in real life environments.

Cloud is the most appropriate solution for storing the huge amount of

data that the sensor networks, grids or other cyber-physical systems

generate. Also, because of their computational power Clouds can process

this information quickly and they offer high availability and resilience.

We have presented the current state of the research in cyber-physical

Cloud integrated systems. From a security point of view most of the

frameworks have chosen simple solutions or didn’t implement any

solution at all.

We also studied two open source platforms which can be used for

developing Cloud integrated cyber-physical systems: Sentilo and

Mirantis OpenStack. These have a stable and mature architecture which

is suitable for supporting such systems. Security-wise OpenStack has

more features than Sentilo.

797

In the future we intend to add our customs security modules to these

platforms to enhance the integrity of the data flow through the system

and also test in depth their performance.

References

[1] Sajjad Hussain Shah, Asad Iqbal, Fazle Kabeer Khan, Wajid Ali,

“A New Framework to Integrate Wireless Sensor Networks with Cloud

Computing”, Aerospace Conference, p. 1-6, 2013.

[2] Wen-Yaw Chung, Pei-Shan Yu, Chao-Jen Huang, “Cloud Computing

System Based on Wireless Sensor Network”, Proceedings of the 2013

Federated Conference on Computer Science and Information Systems,

pp. 877–880, 2013.

*3+ Dinesha H. A., R. Monica, V.K. Agrawal, “Formal Modeling for

Multi-Level Authentication in Sensor-Cloud Integration System”,

International Journal of Applied Information Systems, Volume 2– No.3,

New York, USA, May 2012.

[4] Rajeev Piyare, Sun Park, Se Yeong Maeng, Sang Hyeok Park, Seung

Chan Oh, Sang Gil Choi, Ho Su Choi, Seong Ro Lee, “Integrating

Wireless Sensor Network into Cloud Services for Real-time Data

Collection”, International Conference on ICT Convergence (ICTC), pp.

752 – 756, 2013.

[5] Ahmed Lounis, Abdelkrim Hadjidj, Abdelmadjid Bouabdallah,

Yacine Challal, “Secure and Scalable Cloud-based Architecture for e-

Health Wireless Sensor Networks”, International Conference on

Computer Communication Networks (ICCCN), Munich, Germany, Jul

2012.

*6+ Satyakshma Rawat, Richa Chowdhary, Dr. Abhay Bansal, “Data

Integrity of Cloud Data Storages (CDSs) in Cloud”, International Journal

of Advanced Research in Computer Science and Software Engineering,

Volume 3, Issue 3, March 2013.

*7+ Malcom Bain, “Sentilo - Sensor and Actuator Platform for smart

Cities”, JoinUp European Commission, May 2014.

(https://joinup.ec.europa.eu/community/eupl/document/sentilo-sensor-

and-actuator-platform-smart-cities)

[8] Sentilo project page - http://www.sentilo.io

[9] OpenStack documentation - http://docs.openstack.org

https://joinup.ec.europa.eu/community/eupl/document/sentilo-sensor-and-actuator-platform-smart-cities
https://joinup.ec.europa.eu/community/eupl/document/sentilo-sensor-and-actuator-platform-smart-cities
http://www.sentilo.io/

